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Abstract

Electronic structure calculations were used to study the relaxation, formation and binding energies of small helium clus-
ters in iron. We considered three He defect configurations: two He atoms in an interstitial position and two and three He
atoms located in one vacancy. To study He–vacancy clusters containing more He atoms, we used a multi-scale approach
and constructed an empirical potential fitted to both formation and relaxation energies of a single He defect and small He
clusters obtained from the first principles calculations. The potential consists of a repulsive pair-interaction part and a
many-body attractive term describing the cohesion. The potential was used to study stability of He–vacancy clusters at
zero temperature. The binding energy of a He atom to a He-cluster varies from 1.3 eV to 1.9 eV depending on the cluster
size. When more than six He atoms are placed into a vacancy an Fe self-interstitial atom (SIA) is produced. The SIA bind-
ing energy to a He–di-vacancy cluster decreases from 5.0 eV to 0.7 eV as the number of He atoms increases. The results
obtained are consistent with experimental observations of helium desorption reported in the literature.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

Helium is produced in neutron-irradiated metals
as the result of (n,a) transmutation reactions [1].
Experiments show [2,3] that it is deeply trapped by
the vacancies, decreasing vacancy mobility and
enhancing accumulation of additional vacancies
and helium atoms [4]. This process leads to helium
bubble formation, which can promote void swelling
with a volume change potentially reaching several
tens of percent [5].
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Understanding the fundamental behavior of
helium in metals is one of the key issues in the
research and development of fusion reactor materi-
als. However, due to helium’s high interstitial
mobility and tendency to bind strongly with vacan-
cies, information on its atomistic behavior is hard to
assess from experiments. The main problem is
absence of information on properties and mecha-
nisms such as He migration via the interstitial or
vacancy mechanism, binding properties of He–
vacancy clusters, etc., which are necessary for inter-
pretation of experimental data. The only way to
obtain such information is atomic-scale modeling
via ab initio and/or classical molecular dynamics/
statics techniques. A few attempts have been made
.
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so far and the majority of calculations performed
[6–10] were based on empirical pair potentials for
He in metals, particularly in Fe, as constructed by
Wilson [11] in the late 1960s. The Fe potential was
calculated using the modified Wedepohl [12] method
based on the Thomas–Fermi–Dirac formalism. The
exchange energy of the electrons was treated within
the homogeneous gas approximation, ignoring cor-
relation effects. The potential was defined based on
a pairwise interaction energy for an Fe–He0 dimer
completely ignoring bulk properties of the matrix.
The latter makes it inappropriate for simulating
energy and dynamic properties of He defects in
the iron matrix.

Electronic structure ab initio calculations
[13,14] based on the density functional theory
(DFT) [15,16] have demonstrated that the Wilson
potential [6–8] and other empirical models [9,10]
predict the wrong site preference for the He inter-
stitial defect and significantly overestimate the
binding energy of one He atom with a vacancy
(1He–vacancy cluster, which is He in a substitu-
tional position). These properties may affect the
transport and accumulation of He and vacancies
in the form of pressurized gas bubbles in the Fe
matrix and, consequently, the behavior of struc-
tural materials under irradiation. It therefore
becomes obvious that new efforts should be made
using the modern developments in electronic struc-
ture calculations and classical simulations. In this
paper we describe results of electronic structure
calculations for small He clusters. We considered
two He atoms in the interstitial area and up to
three He atoms placed into a vacancy. However,
electronic structure calculations cannot practically
be extended further at this time. The size of the
computational supercell required to provide a rea-
sonable atomic relaxation increases with the size
of the defect which is, in the case considered here,
the number of helium atoms. Therefore, electronic
structure calculations become tremendously time-
consuming for the case of several He atoms. On
the other hand, the DFT results obtained for small
He clusters can be extrapolated to the case of a
large helium local density using a multi-scale
approach. In this paper we present a simple com-
putationally efficient Fe–He potential fitted to
reproduce formation and relaxation energies
obtained from the first principles results. This
potential was used to study He–vacancy cluster
stability at zero temperature using the classical
molecular statics (MS) technique.
2. Methodology

In a continuation of our previous work [13], the
electronic structure calculations have been per-
formed using the Vienna ab initio simulation pack-
age VASP [17,18]. Solution of the Kohn–Sham
equations [16] was carried out self-consistently using
a plane-wave basis set with PAW pseudopotentials
[19,20]. Exchange and correlation functionals were
taken in a form proposed by Perdew and Wang
(PW91) [21] within the generalized gradient approx-
imation (GGA). We present the results for a 54- and
128-atom supercells. One of the important parame-
ters in our calculations is the cutoff energy, which
determines the size of the plane-wave basis set.
The convergence of the total energy with respect
to the energy cutoff was carefully tested. We have
found that the cutoff energy of 350 eV is sufficient
for a defect containing two He atoms. However,
for more complicated defects such as a defect con-
sisting of three He atoms in one vacancy, we had
to increase the cutoff energy up to 380 eV to elimi-
nate the noise in the forces caused by basis incom-
pleteness. For the 54-atom supercell, we used from
32 to 52 k-points in the irreducible wedge depending
on the defect configuration. For the 128-atom
supercell, the number of k-points varied between
21 and 27. For all He defects we performed a full
relaxation of the atomic positions and of the volume
and shape of the supercell.

To avoid any confusion, we outline the defini-
tions of the terms used in this paper. The relaxation
energy of a crystal is determined as a difference
between the total energy of a crystal before relaxa-
tion and that after. Similarly, the relaxation volume
is a change of the supercell volume caused by the
relaxation. The atomic configuration considered
before relaxation corresponds to iron bcc crystal
with an equilibrium lattice parameter of 2.827 Å
and He atoms located at the same positions as we
find them after relaxation. In this case the relaxation
energy represents the decrease of the total energy of
the crystal due to the relaxation of Fe atoms around
He defects. The formation energy of the defect is
given by

Ef
defect ¼ ENFe;MHe � N � EFe �M � EHe; ð1Þ

where N and M are the numbers of Fe and He
atoms in the supercell, respectively, ENFe,MHe is
the total energy of the supercell with the defect,
EFe is the total energy per Fe in a perfect bcc lattice,
and EHe is the total energy of an isolated He atom.
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The binding energy of N He interstitial atoms is de-
fined as the energy required to move these atoms
into infinitely separated interstitial positions. It is
given by

Eb
NHe-int ¼ ENHe-int � NEHe-int; ð2Þ

where ENHe-int and EHe-int are the total energies of
supercells with N and one He interstitial, respec-
tively. The binding energy of an atom i to a He–
vacancy cluster is determined by

Eb
i ¼ ENi;Mj � EðN�1Þi;Mj � Ei-int; ð3Þ

where ENi,Mj is the total energy of a crystal consist-
ing of N atoms of type i and M atoms of a type j and
Ei-int, is the total energy of the supercell with an i

type of interstitial. The migration energy of an inter-
stitial is determined as the energy barrier which the
atom has to overcome in passing from one stable
interstitial position to another.

3. Results

3.1. DFT calculations

We considered three different defect configura-
tions: two He atoms placed in an interstitial position
(2He), and either two or three He atoms located
inside one vacancy (2He–vac and 3He–vac). Two
He atoms were put inside the vacancy in the form
of a dumbbell in three different orientations: along
the h1 00i, h110i and h111i principal crystal axes.
For three He atoms, we considered only one config-
uration, an isosceles triangle lying in the {110}
plane. For these configurations we calculated the
relaxation and formation energy, volume dilatation
and relaxed position of He atoms. The results of cal-
culations for 54- and 128-atom supercells are pre-
Table 1
DFT results for small He clusters and He tetrahedral interstitial

2He 2He–vac [100] 2He–vac [

54 atoms R, Å 1.60 1.53 1.55
DV, X 1.32 0.35 0.30
Erel, eV 3.55 0.73 0.75
Ef, eV 9.15 7.12 6.95

128 atoms R, Å 1.60 – 1.55
DV, X 1.22 – 0.27
Erel, eV 4.06 – 0.74
Ef, eV 8.72 – 6.63

R is a He–He separation, DV is a volume change during atomic relaxatio
X is iron equilibrium atomic volume equal to 11.297 Å3.

a The results for He tetrahedral interstitial in 128-atom supercell wer
sented in Table 1. We also include previously
published [13] results for the He tetrahedral intersti-
tial. First, one can see that all He defects produce
strong lattice relaxation. The displacements of Fe
atoms at the supercell boundary show that the
supercells employed are not large enough to reach
complete atomic relaxation. Increasing the supercell
size from 54 to 128 atoms decreases the formation
energies of the defects by 0.1–0.4 eV and also
reduces the dilatation of the supercell volume. The
largest decrease of the formation energy corre-
sponds to two He interstitials. Nevertheless, if one
compares the energy values energy obtained for
the same computational settings, the relationship
between the energies changes insignificantly. Thus,
our results are reliable to make some important con-
clusions. For example, the binding energy of two He
interstitials obtained using a 54-atom supercell is
equal to 0.03 eV. For 128 atoms, the value is
0.02 eV. Both these numbers lie near the limit of
the computational accuracy of the method and we
conclude that He interstitials are bound to each
other extremely weakly.

The formation energy of a 2He–vacancy complex
depends insignificantly on the He atoms orientation
indicating that this complex is likely to rotate inside
the vacancy. For h11 0i and h1 11i dumbbell the for-
mation energies differ by only 0.02 eV. The forma-
tion energy is slightly higher for the h100i
dumbbell. The volume expansion of the supercell
changes linearly with the number of He atoms inside
the vacancy. The formation volume of an isolated
vacancy is �0.25X, where X = 11.297 Å3 is the equi-
librium atomic volume in bcc iron. When one He
atom is placed into the vacancy, the supercell vol-
ume gets restored to its equilibrium value [13].
When the number of He atoms inside the vacancy
110] 2He–vac [111] 3He–vac He inta

1.55 1.56, 1.61, 1.61 –
0.30 0.76 0.70
0.69 1.03 1.07
6.97 9.68 4.59

– 1.56, 1.61, 1.61 –
– 0.66 0.51
– 1.20 1.29
– 9.44 4.37

n, Erel and Ef are relaxation and formation energies of the defects,

e published in [13].
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Fig. 1. (a) Effective interaction energy and (b) effective force
dependence versus distance between He atoms.
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changes from two to three, the volume expansion
increases from 0.27X to 0.66X. In all cases consid-
ered, the equilibrium spacing between He atoms,
1.5–1.6 Å, is significantly shorter then the spacing
between He–He atoms in vacuum which is equal
to 2.97 Å [22].

3.2. Interaction potentials for He in the Fe matrix

The results of first principles calculations were
used as input for the development of empirical
potentials for Fe–He and He–He interactions in
the iron matrix described by a particular Fe poten-
tial from the literature. Our objective was to fit for-
mation and relaxation energies of the following six
configurations: He interstitial in octahedral and tet-
rahedral positions, single He substitutional defect
and the three helium clusters (2He, 2He– and
3He–vacancy) described above. The full set of
potentials necessary for classic atomistic simulation
includes description of Fe–Fe, Fe–He and He–He
interactions. For this purpose, we have initially used
the well-known Finnis–Sinclair many-body poten-
tial that reasonably reproduces the basic properties
of alpha-iron [23], although it overestimates the for-
mation energies of Fe SIAs in comparison with
DFT–GGA calculations [24]. Note that the Fin-
nis–Sinclair potential has also been using in combi-
nation with Wilson’s Fe–He potential in earlier
studies of helium in iron [6,7]. Therefore, using the
Finnis–Sinclair potential provides a comparison of
our results with the results of previous simulations.
It is important to note that the technique we use to
obtain the Fe–He cross potential can be applied to
any other iron matrix potential, and we are in the
process of applying this approach with more recent
iron potentials.

Since our aim is to obtain an Fe–He potential
fitted to the properties of multiple He–atom clus-
ters, we need to first define the He–He potential in
bulk iron. To this end, we performed ab initio calcu-
lations for an unrelaxed bcc iron lattice with 128 Fe
atoms in the supercell and with two He interstitials
in their most stable position, i.e. in tetrahedral sites.
It was assumed that the Fe–He interaction is short-
range and therefore, due to symmetry, the forces
acting on He atoms from Fe atoms are the same
for the both He atoms and do not affect the force
that one He atom experiences from the other. By
placing two He interstitials at different distances
from each other one can obtain the distance depen-
dence of the He–He effective force. The He–He
effective interaction energy can also be calculated
if one subtracts twice the total energy of a single
He tetrahedral defect from the total energy of a
crystal with two He interstitials. The above tech-
nique allows the effective force and interaction
energy to be obtained independently without mak-
ing any assumptions about the He–He potential
model. The obtained distance dependence of the
He–He effective interaction energy and the effective
force are presented in Fig. 1(a) and (b), respectively.
For comparison we show the He–He interaction
energy and force received from ab initio calculations
in vacuum [25]. One can see that at short distance,
<2 Å, the He–He effective interaction in iron is very
similar to the He–He interaction in vacuum. Since
the d-electrons of iron are well localized, the elec-
tronic charge density is low in the interstitial area
and it has a small effect on the repulsion between
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He cores. However, the He–He interaction in vac-
uum becomes extremely weak at distances larger
than 2 Å, while remaining noticeably stronger in
the iron matrix. Interatomic separations larger then
a lattice parameter were not considered in our ab ini-
tio calculations, since the results can be affected by
He–He interaction through the boundaries of the
simulated 128-atom supercell. In general, we con-
clude that He–He interaction in the iron crystal
can be reasonably well represented by the pair
potential [25] calculated for the vacuum.

The interaction between He and Fe atoms is
more complex. As discussed previously [26], it is
unlikely that a pair-potential function can describe
both the formation and relaxation energies of He
defects in iron simultaneously. The physical reason
for this difficulty is a change of the magnetic
moment of the neighboring Fe atoms produced by
the He defect. In the language of potentials this is
because the Fe–He interaction energy and force
depend not only on the distance between Fe and
He atoms but also on the environment of each of
them. In other words, one must include a many-
body interaction part in the Fe–He potential.

To simplify future applications of the empirical
Fe–He potential we have chosen the same model
as used for the matrix iron potential [23] which is
the well-known many-body formalism introduced
by Finnis and Sinclair. Then, the total energy of
an Fe–He system is written as

E ¼
X

i

Ai
ffiffiffiffi
qi
p þ

X
i;j 6¼i

V ðrijÞ; ð4Þ

where the first term represents an attractive many-
body interaction which provides cohesion and the
second term is a repulsive pair potential. The first
sum is carried over the atoms in the supercell; the
second sum is performed over the total number of
the interacting atomic pairs. The Ai coefficient de-
pends on the atom type and qi is the surrounding
atomic density that is given by the sum of the atom-
ic density functions, W(rij)

qi ¼
X
j 6¼i

WðrijÞ. ð5Þ

For the density function, W(rij), and pair-potential
function, V(rij), we choose a simple and relatively
flexible mathematical form which is

F ðrijÞ ¼ p1 1� p2

rij

p3

� 1

� �� �
e
�p4

rij
p3
�1

� �
� fcutðrijÞ;

ð6Þ
where fcut(rij) is a cutoff function whose first and
second derivatives vanish when rij = rb and rij = rc:

fcutðrijÞ ¼ ð1� xÞ3ð1þ 3xþ 6x2Þ; where

x ¼ rij � rb

rc � rb

: ð7Þ

For rij < rb, x = 0 and for rij > rc, x = 1. Eq. (6) indi-
cates that F(rij) has four fitting parameters; how-
ever, p3 is simply a scaling factor leaving only
three free parameters. Depending on their values,
the function can be either continuously decreasing
or increasing. It may also have one extremum. Over-
all, there are seven free fitting parameters describing
the Fe–He interaction. They are found by fitting 12
energies obtained from the first principles calcula-
tions. First, we had to reduce the discrepancies be-
tween DFT calculations and Finnis–Sinclair
potential for pure iron. The equilibrium lattice
parameter for iron calculated by DFT is equal to
2.827 Å, while the Finnis–Sinclair potential gives a
value 2.8665 Å. A similar discrepancy arises when
we consider vacancy formation energy. The DFT
calculated value is 2.07 eV and the Finnis–Sinclair
potential gives 1.83 eV. Since we are interested in
He defect calculations in a Finnis–Sinclair matrix,
the values obtained for the structures considered
in DFT calculations were rescaled. In the case of
He defects located in iron vacancies, we subtracted
0.24 eV from the formation energies of the defects.
Thus, in our fitting scheme the primary formation
energies of two and three He atoms in a vacancy
were equal to 6.59 eV and 9.20 eV, respectively.

The parameters were fitted using a least-squares
method. Our fitting database included 12 formation
energies corresponding to six selected He defect con-
figurations with relaxed and unrelaxed structures
calculated by VASP. Initial guesses for the potential
parameters {AHe, fi} were used to estimate the sum
of squared differences. The minimization of the
sum of squared differences was performed by the
conjugate-gradient method. However, this proce-
dure does not guarantee zero forces for the relaxed
configurations. Therefore, the obtained potential
function was used to relax the above configurations
by classical MS in the same 128-atom crystal with
periodic boundary conditions. The parameters
{AHe, fi} were then varied and relaxation repeated
until the sum of squared differences between ab ini-
tio and MS simulations reaches its minimum. The
calculated values of the parameters, {fi}, are shown
in Table 2. The parameter AHe in Eq. (4) was found
to be equal to 0.087783 eV/Å. The density functions



Table 2
Parameters for density function and pair potential given by Eq. (6)

f1 f2 f3 f4 rb rc

Density function 15.855398 Å2 �34.814838 0.537171 Å 2.359959 3.2 Å 3.9 Å
Pair potential 0.327625 eV �0.089017 2.514731 Å 6.877193 3.2 Å 3.9 Å

The units of the parameters are specified for each case.
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and pair potentials for the Fe–He system are pre-
sented in Figs. 2 and 3, respectively, together with
Wilson’s pair potential for comparison.

Although, our system of equations is over deter-
mined, we were able to fit first principles energies
with reasonably high accuracy. The results of the fit-
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Fig. 3. The repulsive pair potentials, V(r) (Eq. (4)), for Fe–He
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Fig. 2. The density functions, W(r) (Eq. (5)), for Fe–He interac-
tion and Fe–Fe interaction in Finnis–Sinclair model [23].
ting procedure for a single He defect and small He
clusters are presented in Tables 3 and 4, respec-
tively. Unless specified, the calculations were per-
formed for 128-atom supercell. In Table 3 one can
see that the fitted empirical potential reproduces
the preference order for a single He defect. The
relaxation energies are described with less accuracy
than the formation energies of the unrelaxed struc-
tures. Note that the relaxation energy included in
Table 3 for the tetrahedral He defect (1.29 eV) rep-
resents a correction from our previously published
value [13]. In Fig. 4 we present the profile of the for-
mation energy of a He interstitial defect along a
[100] path in the unrelaxed iron lattice. One can
see that the new empirical potential reproduces the
energy profile extremely well, even though interme-
diate He positions along the path were not included
in the fitting procedure. We also tested how well the
new potential describes the effective force exerted by
a He interstitial on the iron sites in unrelaxed lattice.
The dependence of the effective force on the distance
between an Fe atom and a He interstitial is pre-
sented in Fig. 5. The new potential reproduces the
effective Fe–He force reasonably well except for
Table 4
He–He separation, relaxation and formation energies of He
clusters in iron calculated using fitted empirical potential

2He 2He–vac 3He–vac

R, Å 8.79 1.53 1.63, 1.63, 1.63
Erel, eV 1.68 0.43 1.55
Ef, eV 8.79 6.61 9.28

Table 3
Relaxation and formation energies measured in eV of single He
defect in iron calculated from the first principles and using fitted
empirical potential

Heocta Hetetra Hesub

Erel Ef Erel Ef Erel Ef

VASP [13] 1.76 4.60 1.29 4.37 0.32 3.84
Fe–He potential 1.83 4.54 1.15 4.50 0.15 3.91

Ef of Hesub was shifted according to the text.
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very short separation distances, which causes the
above-mentioned disagreement in relaxation ener-
gies. The formation energies of the relaxed struc-
tures are fitted to within an accuracy of 0.13 eV.
The maximum energy deviation is obtained for the
He tetrahedral defect.

The accuracy of the fitted properties for the He
clusters shown in Table 4 is satisfactory. The forma-
tion energy of two He interstitials obtained with the
new potential differs by 0.07 eV from the results
presented in Table 1. Taking into account that the
formation energy of the He interstitial is also repro-
duced with some inaccuracy, the binding energy of
two He interstitials, which is equal to 0.21 eV,
appears to be somewhat overestimated. The accu-
racy of the new potential is least accurate at describ-
ing the properties of He in the interstitial region.
However, since helium is easily trapped by vacancies
and exhibits rapid interstitial migration, the defi-
ciency of our potential in describing He properties
in the interstitial region should have only a weak
effect on its application to future simulations involv-
ing He–vacancy-type defects. The formation ener-
gies of He atoms placed in a vacancy are slightly
overestimated compared with the shifted results of
ab initio calculations. For two and three He atoms
inside a vacancy, the formation energy received with
the new potential differs from their ab initio values
by 0.22 eV and 0.08 eV, respectively. The values of
the formation energies presented in Tables 3 and 4
are found to be slightly lower when the simulations
have been performed on larger supercells.

3.3. Static properties of multiple He–vacancy

clusters

The newly obtained Fe–He potential was used to
study He–vacancy cluster stability at 0 K. We con-
sidered an iron bcc crystal with one vacancy and
up to 10 He atoms placed inside it. Periodic bound-
ary conditions were applied to a 10a0 · 10a0 · 10a0

computational cubic box (a0 = 2.8665 Å is bcc iron
equilibrium lattice parameter). The atomic coordi-
nates were relaxed using a conjugate-gradient
method to zero force at constant volume. We
observed a strong atomic relaxation around the
He–vacancy complex. When the number of He
atoms in a vacancy is equal to seven, the local forces
produced by the He–vacancy complex are strong
enough to cause the formation of an Fe SIA. The
displacement of the first neighbor Fe from its lattice
site reaches 0.41 Å, which is 14% of the lattice
parameter. We studied the dependence of the bind-
ing energy of a He atom to a He–vacancy cluster
versus the cluster size using Eq. (3). In the extreme
case, when the number of He atoms inside the
vacancy is equal to zero, we considered the binding
energy of He atom to the vacancy. We also studied
the case when a He–vacancy cluster forces the emis-
sion of the neighboring Fe atom into an interstitial
position, and calculated the binding energy of the
Fe SIA to the remaining He–di-vacancy cluster.
The results for the He atom and Fe SIA are pre-
sented in Fig. 6(a) and (b), respectively. The abscissa
in Fig. 6(a) denotes the number of He atoms in the
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cluster before the next He is bound. Thus, the value
for the first He bound to the vacancy is shown at
zero. The corresponding energies obtained from
Wilson’s Fe–He pair potential are also presented
for comparison. In Fig. 6(a) we also show the bind-
ing energies for the 2He– and 3He–vacancy com-
plexes calculated from first principles. One can see
that the results obtained with the new potential
for the binding of small He clusters inside a vacancy
are in very good agreement with ab initio calcula-
tions. Only for the case of the 3He–vacancy cluster
is the binding energy overestimated by as much as
0.25 eV.

Comparison with Wilson’s potential in Fig. 6(a)
demonstrates that it systematically overestimates
the binding of a single He atom to the vacancy.
The discrepancy is 1.3 eV and is a significant defi-
ciency of Wilson’s potential. Another feature of
the new Fe–He potential is that it gives strong pref-
erence for symmetric configurations. Wilson’s pair
potential can only poorly reproduce this preference
for the symmetric configurations due to its spheri-
cally symmetric, purely repulsive nature. The bind-
ing energy of a He atom to the cluster changes
from 1.75 eV to 2.0 eV, when the size of cluster goes
from 3 to 4 atoms. This corresponds to formation of
a tetrahedral He structure inside the vacancy.
Another peak at 6 He atoms is related to formation
of an octahedron. When the seventh He atom is
added to the He–vacancy cluster, it is ejected to
an interstitial position 1.5 Å away from the vacancy
center. All subsequent atoms are also pushed into
the interstitial region nearby the vacancy center.
The binding energy of a He atom to the He–vacancy
cluster changes irregularly depending on the num-
ber of He atoms. However, it remains high, indicat-
ing that He-clusters should remain stable up to high
temperatures which is also in agreement with exper-
imental observations [2,3]. At the same time, the
binding energy of an Fe SIA to the cluster decreases
continuously as the number of He atoms increases
and for the 9He–di-vacancy complex it reaches
0.7 eV. Wilson’s potential predicts the same depen-
dence of the binding energy of the Fe SIA on the
cluster size, but systematically underestimates the
absolute value of the energy.

As seen in Fig. 6(a), the lowest binding energy
occurs for the case of a 9He–vacancy cluster and
is equal to 1.31 eV. Using this value one can esti-
mate the activation energy for helium desorption,
defined as a sum of binding and He interstitial
migration energies. The migration energy of the
He interstitial was calculated by moving a He defect
from a tetrahedral to an octahedral site along a
[100] path and performing complete atomic relaxa-
tion at each position. It was found to be the same as
the difference between the formation energies of He
octahedral and tetrahedral interstitials, namely
0.04 eV. Thus, the calculated desorption activation
energy is equal to 1.35 eV. The value found from
the desorption experiments is 1.4 ± 0.3 eV [3]. While
the calculated and experimentally measured values
are very similar, more simulations have to be done
to confirm this agreement. The simulations must
be performed at experimental conditions that
include high temperature and with the correct He–
vacancy ratio. Since the mass of a He atom is about
ten times smaller than the mass of an Fe atom, the
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results of molecular dynamics simulation can be
very different from the one obtained in our static
picture. Looking only at the binding energies at zero
temperature, we can make a few conclusions. One of
the important results of our simulations is the
reduction in Fe SIAs binding energy with the num-
ber of He atoms. This is a necessary condition for
He-bubbles to grow inside the iron matrix. Earlier
calculations also suggested that highly pressurized
bubbles could emit interstitials and/or punch small
interstitial loops [27,28]. Using the data from
Fig. 6(b) one can expect that in the case of 10 He
atoms inside a vacancy an Fe SIA can be emitted.
Internal thermal pressure due to the He–He interac-
tion should shift all the critical processes towards a
lower He-to-vacancy ratio.

4. Conclusions

A multi-scale approach has been applied to
study He cluster properties in iron. Electronic
structure calculations were performed for up to
three He atoms inside a single vacancy. These
results were used to fit a new empirical many-body
Finnis–Sinclair type potential for He in an iron
matrix. The potential reproduces formation and
relaxation energies of single He and small He clus-
ters with a good accuracy. We used the potential to
study zero temperature stability of helium clusters
in a vacancy. The binding of an Fe self-interstitial
to the helium–di-vacancy cluster decreases linearly
with the increase of the cluster size, while He atoms
remain bound to the He–vacancy cluster with an
energy higher then 1.3 eV. The He-cluster binding
energy also depends strongly on the number of
He atoms in the cluster. The fact that the binding
energy of a He atom to the He–vacancy cluster
never goes to zero reflects the weak He–He interac-
tions in comparison with Fe–He. This is a neces-
sary condition for substantial accumulation of He
inside vacancy clusters. This stability provides a
driving force for helium bubbles growth and swell-
ing under irradiation when He is produced in the
matrix.

The newly developed Fe–He potential is simple
and efficient for application in molecular dynamics
simulations. However, it was developed for an iron
matrix described by Finnis–Sinclair potential that
overestimates the formation energies of Fe SIAs
and the activation energy of vacancy migration.
This sets some limitations on the problems that
can be considered using the new potential. In fur-
ther work, the fitting scheme presented in this paper
will be used to obtain another Fe–He potential
based on the iron potential recently developed by
Mendelev et al. [29].
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